

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2023

CC4-MATHEMATICS

DIFFERENTIAL EQUATION AND VECTOR CALCULUS (REVISED SYLLABUS 2023)

Time Allotted: 2 Hours

Full Marks: 60

3

The figures in the margin indicate full marks.

GROUP-A

Answer any <i>four</i> questions from the following	$3 \times 4 = 12$

1. Solve
$$(x + y + 1)\frac{dy}{dx} = 1$$
.

2. If
$$\vec{a}$$
, \vec{b} , \vec{c} be three vectors, show that $[\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$. 3

- 3. State Lipschitz condition. Show that the function $f(x, y) = xy^2$ satisfies 3 Lipschitz condition on the region $|x| \le 1$, $|y| \le 1$.
- 4. Show that the differential equation $x^3 \frac{d^3y}{dx^3} 6x \frac{dy}{dx} + 12y = 0$ has three linearly 3 independent solutions of the form $y = x^r$.
- 5. A force $3\hat{i} + \hat{k}$ acts through the point $2\hat{i} \hat{j} + 3\hat{k}$. Find the torque of the force 3 about the point $\hat{i} + 2\hat{j} - \hat{k}$.
- 6. Find the linear differential equation with real constant coefficient that is satisfied 3 by the function. $y = 9 - 3x + \frac{1}{6}e^{5x}$.

GROUP-B

Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
---	-------------------

7. Solve by the method of variation of parameters:

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{e^x}{1 + e^x}.$$

6

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHCC4/Revised & Old/2023

8. Let
$$\vec{F}(t) = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$$
. Find $\int_{1}^{2} \vec{F}(t) \times \frac{d^2\vec{F}(t)}{dt^2} dt$.

9. Solve the following differential equation
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \log x \sin(\log x)$$
 6

10. If
$$\vec{r} = (a \cos t) \hat{i} + (a \sin t) \hat{j} + (at \tan \alpha) \hat{k}$$
, then prove that
$$\left[\frac{d\vec{r}}{dt}, \frac{d^2\vec{r}}{dt^2}, \frac{d^3\vec{r}}{dt^3}\right] = a^3 \tan \alpha$$

11. Solve the equation $(D^2 - 2D + 1)y = xe^x$, by the method of undetermined 6 coefficients.

12. Solve:
$$\frac{dx}{dt} - 7x + y = 0$$
$$\frac{dy}{dt} - 2x - 5y = 0$$

GROUP-C

Answer any <i>two</i> questions of the following	$12 \times 2 = 24$
13.(a) Show that the equation of the curve, whose slope at any point (x, y) is equal to	6
$y + 2x$ and which passes through the origin, is $y = 2(e^x - x - 1)$	

(b) Show that the vector field defined by $\vec{F} = 2xyz^3\hat{i} + x^2z^3\hat{j} + 3x^2yz^2\hat{k}$ is irrotational. Find the scalar potential *u* such that $\vec{F} = \text{grad } u$.

14.(a) Solve
$$x^2 \frac{d^2 y}{dx^2} - x(x+2)\frac{dy}{dx} + (x+2)y = x^3$$
 given that $y = x$ and $y = xe^x$ are two
linearly independent solutions of the corresponding homogeneous system.

(b) If
$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
 and $r = |\vec{r}|$ prove that curl $(f(r)\vec{r}) = \vec{0}$.

15.(a) Solve
$$\frac{d^2y}{dx^2} - \frac{2}{x}\frac{dy}{dx} + \left(a^2 + \frac{2}{x^2}\right)y = 0$$
 by reducing to normal form. 6

(b) If
$$u = x + y + z$$
, $v = x^2 + y^2 + z^2$, $w = yz + zx + xy$, prove that
 $(\operatorname{grad} u) \cdot \{(\operatorname{grad} v) \times (\operatorname{grad} w)\} = 0$.

- 16.(a) Prove that $(x+y+1)^{-4}$ is an integrating factor of the equation 7 $(2xy-y^2-y) dx + (2xy-x^2-x) dy = 0$ and hence solve it.
 - (b) If $\vec{F} = zy\hat{i} + z\hat{j} + y^2x\hat{k}$, where C is the curve: $x^2 + y^2 = 1, z = 0$, then find the value of $\oint_C \vec{F} \cdot d\vec{r}$.

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2023

CC4-MATHEMATICS

DIFFERENTIAL EQUATION AND VECTOR CALCULUS

(OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

 $3 \times 4 = 12$

The figures in the margin indicate full marks.

GROUP-A

Answer any four questions from the following

- 1. Find $\frac{1}{D^2 9} \{e^{3x} \cosh x + e^{3x} \cdot x^2 \sin x\}.$
- 2. If \vec{a} , \vec{b} , \vec{c} be three vectors, show that $[\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$.
- 3. State Lipschitz condition. Show that the function $f(x, y) = xy^2$ satisfies Lipschitz condition on the region $|x| \le 1$, $|y| \le 1$.
- 4. Show that the differential equation $x^3 \frac{d^3y}{dx^3} 6x \frac{dy}{dx} + 12y = 0$ has three linearly independent solutions of the form $y = x^r$.
- 5. A force $3\hat{i} + \hat{k}$ acts through the point $2\hat{i} \hat{j} + 3\hat{k}$. Find the torque of the force about the point $\hat{i} + 2\hat{j} \hat{k}$.
- 6. Locate and classify the singular points of the equation $d^{2} = dt$

$$x^{2}(x^{2}-4)\frac{d^{2}y}{dx^{2}}+3x^{3}\frac{dy}{dx}+4y=0.$$

GROUP-B

Answer any four questions from the following

 $6 \times 4 = 24$

7. Solve by the method of variation of parameters: $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{e^x}{1 + e^x}$.

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHCC4/Revised & Old/2023

8. Let
$$\vec{F}(t) = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$$
. Find $\int_{1}^{2} \vec{F}(t) \times \frac{d^2\vec{F}(t)}{dt^2} dt$.

9. Solve the following differential equation $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \log x \cdot \sin(\log x)$.

- 10. If $\vec{r} = a\cos t \ \hat{i} + a\sin t \ \hat{j} + at\tan \alpha \ \hat{k}$, then prove that $\left[\frac{d\vec{r}}{dt}, \ \frac{d^2\vec{r}}{dt^2}, \ \frac{d^3\vec{r}}{dt^3}\right] = a^3 \tan \alpha$
- 11. Solve the equation $(D^2 2D + 1)y = xe^x$ by the method of undetermined coefficients.
- 12. Solve: $\frac{dx}{dt} 7x + y = 0$ $\frac{dy}{dt} 2x 5y = 0$

GROUP-C Answer any *two* questions of the following

13. (a) Find the power series solution of $(x^2 + 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - xy = 0$ about the point x = 0.

 $12 \times 2 = 24$

(b) Show that the vector field defined by $\vec{F} = 2xyz^3\hat{i} + x^2z^3\hat{j} + 3x^2yz^2\hat{k}$ is 6 irrotational. Find the scalar potential *u* such that $\vec{F} = \text{grad } u$.

15.(a) Solve
$$\frac{d^2y}{dx^2} - \frac{2}{x}\frac{dy}{dx} + \left(a^2 + \frac{2}{x^2}\right)y = 0$$
 by reducing to normal form. 6

(b) If
$$u = x + y + z$$
, $v = x^2 + y^2 + z^2$, $w = yz + zx + xy$, prove that
 $(\operatorname{grad} u) \cdot \{(\operatorname{grad} v) \times (\operatorname{grad} w)\} = 0$.

16.(a) Solve
$$(D^3 - D^2 + 3D + 5)y = e^x \cos 3x$$
. 6

(b) If $\vec{F} = y\hat{i} + z\hat{j} + x\hat{k}$, where *C* is the curve: $x^2 + y^2 = 1$, z = 0, then find the value of $\oint_C \vec{F} \cdot d\vec{r}$.