'समानो मन्त्रः समितिः समानी'
UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 2nd Semester Examination, 2023

CC4-MATHEMATICS

Differential Equation and Vector Calculus
 (REVISED Syllabus 2023)

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks.

GROUP-A

Answer any four questions from the following

1. Solve $(x+y+1) \frac{d y}{d x}=1$.
2. If $\vec{a}, \vec{b}, \vec{c}$ be three vectors, show that $[\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}]=\left[\begin{array}{ll}\vec{a} & \vec{b} \\ c\end{array}\right]^{2}$.
3. State Lipschitz condition. Show that the function $f(x, y)=x y^{2}$ satisfies Lipschitz condition on the region $|x| \leq 1,|y| \leq 1$.
4. Show that the differential equation $x^{3} \frac{d^{3} y}{d x^{3}}-6 x \frac{d y}{d x}+12 y=0$ has three linearly 3 independent solutions of the form $y=x^{r}$.
5. A force $3 \hat{i}+\hat{k}$ acts through the point $2 \hat{i}-\hat{j}+3 \hat{k}$. Find the torque of the force about the point $\hat{i}+2 \hat{j}-\hat{k}$.
6. Find the linear differential equation with real constant coefficient that is satisfied by the function. $y=9-3 x+\frac{1}{6} e^{5 x}$.

GROUP-B

Answer any four questions from the following $\quad 6 \times 4=24$
7. Solve by the method of variation of parameters:

$$
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=\frac{e^{x}}{1+e^{x}}
$$

8. Let $\vec{F}(t)=5 t^{2} \hat{i}+t \hat{j}-t^{3} \hat{k}$. Find $\int_{1}^{2} \vec{F}(t) \times \frac{d^{2} \vec{F}(t)}{d t^{2}} d t$.
9. Solve the following differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=\log x \sin (\log x)$
10. If $\vec{r}=(a \cos t) \hat{i}+(a \sin t) \hat{j}+(a t \tan \alpha) \hat{k}$, then prove that

$$
\begin{equation*}
\left[\frac{d \vec{r}}{d t}, \frac{d^{2} \vec{r}}{d t^{2}}, \frac{d^{3} \vec{r}}{d t^{3}}\right]=a^{3} \tan \alpha \tag{6}
\end{equation*}
$$

11. Solve the equation $\left(D^{2}-2 D+1\right) y=x e^{x}$, by the method of undetermined coefficients.
12. Solve : $\frac{d x}{d t}-7 x+y=0$

$$
\frac{d y}{d t}-2 x-5 y=0
$$

GROUP-C

Answer any two questions of the following

13.(a) Show that the equation of the curve, whose slope at any point (x, y) is equal to $y+2 x$ and which passes through the origin, is $y=2\left(e^{x}-x-1\right)$
(b) Show that the vector field defined by $\vec{F}=2 x y z^{3} \hat{i}+x^{2} z^{3} \hat{j}+3 x^{2} y z^{2} \hat{k}$ is irrotational. Find the scalar potential u such that $\vec{F}=\operatorname{grad} u$.
14.(a) Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x(x+2) \frac{d y}{d x}+(x+2) y=x^{3}$ given that $y=x$ and $y=x e^{x}$ are two linearly independent solutions of the corresponding homogeneous system.
(b) If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\vec{r}|$ prove that $\operatorname{curl}(f(r) \vec{r})=\overrightarrow{0}$.
15.(a) Solve $\frac{d^{2} y}{d x^{2}}-\frac{2}{x} \frac{d y}{d x}+\left(a^{2}+\frac{2}{x^{2}}\right) y=0$ by reducing to normal form.
(b) If $u=x+y+z, v=x^{2}+y^{2}+z^{2}, w=y z+z x+x y$, prove that $(\operatorname{grad} u) \cdot\{(\operatorname{grad} v) \times(\operatorname{grad} w)\}=0$.
16.(a) Prove that $(x+y+1)^{-4}$ is an integrating factor of the equation 7 $\left(2 x y-y^{2}-y\right) d x+\left(2 x y-x^{2}-x\right) d y=0$ and hence solve it.
(b) If $\vec{F}=z y \hat{i}+z \hat{j}+y^{2} x \hat{k}$, where C is the curve: $x^{2}+y^{2}=1, z=0$, then find the value of $\oint_{C} \vec{F} \cdot d \vec{r}$.
'समानो मन्त्रः समितिः समानी'
UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 2nd Semester Examination, 2023

CC4-Mathematics

Differential Equation and Vector Calculus

(Old Syllabus 2018)

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks.

GROUP-A

Answer any four questions from the following

1. Find $\frac{1}{D^{2}-9}\left\{e^{3 x} \cosh x+e^{3 x} \cdot x^{2}-\sin x\right\}$.
2. If $\vec{a}, \vec{b}, \vec{c}$ be three vectors, show that $[\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}]=[\vec{a} \vec{b} \vec{c}]^{2}$.
3. State Lipschitz condition. Show that the function $f(x, y)=x y^{2}$ satisfies Lipschitz condition on the region $|x| \leq 1,|y| \leq 1$.
4. Show that the differential equation $x^{3} \frac{d^{3} y}{d x^{3}}-6 x \frac{d y}{d x}+12 y=0$ has three linearly independent solutions of the form $y=x^{r}$.
5. A force $3 \hat{i}+\hat{k}$ acts through the point $2 \hat{i}-\hat{j}+3 \hat{k}$. Find the torque of the force about the point $\hat{i}+2 \hat{j}-\hat{k}$.
6. Locate and classify the singular points of the equation
$x^{2}\left(x^{2}-4\right) \frac{d^{2} y}{d x^{2}}+3 x^{3} \frac{d y}{d x}+4 y=0$.

GROUP-B

Answer any four questions from the following
$6 \times 4=24$
7. Solve by the method of variation of parameters: $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=\frac{e^{x}}{1+e^{x}}$.
8. Let $\vec{F}(t)=5 t^{2} \hat{i}+t \hat{j}-t^{3} \hat{k}$. Find $\int_{1}^{2} \vec{F}(t) \times \frac{d^{2} \vec{F}(t)}{d t^{2}} d t$.
9. Solve the following differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=\log x \cdot \sin (\log x)$.
10. If $\vec{r}=a \cos t \hat{i}+a \sin t \hat{j}+a t \tan \alpha \hat{k}$, then prove that

$$
\left[\frac{d \vec{r}}{d t}, \frac{d^{2} \vec{r}}{d t^{2}}, \frac{d^{3} \vec{r}}{d t^{3}}\right]=a^{3} \tan \alpha
$$

11. Solve the equation $\left(D^{2}-2 D+1\right) y=x e^{x}$ by the method of undetermined coefficients.
12. Solve : $\frac{d x}{d t}-7 x+y=0$

$$
\frac{d y}{d t}-2 x-5 y=0
$$

GROUP-C

Answer any two questions of the following

13. (a) Find the power series solution of $\left(x^{2}+1\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-x y=0$ about the point $x=0$.
(b) Show that the vector field defined by $\vec{F}=2 x y z^{3} \hat{i}+x^{2} z^{3} \hat{j}+3 x^{2} y z^{2} \hat{k}$ is irrotational. Find the scalar potential u such that $\vec{F}=\operatorname{grad} u$.
14.(a) Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x(x+2) \frac{d y}{d x}+(x+2) y=x^{3}$ given that $y=x$ and $y=x e^{x}$ are two linearly independent solutions of the corresponding homogeneous system.
(b) If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\vec{r}|$, prove that $\operatorname{curl}(f(r) \vec{r})=\overrightarrow{0}$.
15.(a) Solve $\frac{d^{2} y}{d x^{2}}-\frac{2}{x} \frac{d y}{d x}+\left(a^{2}+\frac{2}{x^{2}}\right) y=0$ by reducing to normal form.
(b) If $u=x+y+z, v=x^{2}+y^{2}+z^{2}, w=y z+z x+x y$, prove that $(\operatorname{grad} u) \cdot\{(\operatorname{grad} v) \times(\operatorname{grad} w)\}=0$.
16.(a) Solve $\left(D^{3}-D^{2}+3 D+5\right) y=e^{x} \cos 3 x$.
(b) If $\vec{F}=y \hat{i}+z \hat{j}+x \hat{k}$, where C is the curve: $x^{2}+y^{2}=1, z=0$, then find the value 6 of $\oint_{C} \vec{F} \cdot d \vec{r}$.
\qquad
